Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Cancer Rep (Hoboken) ; 7(3): e1992, 2024 03.
Article in English | MEDLINE | ID: mdl-38441351

ABSTRACT

BACKGROUND: Doege-Potter syndrome is defined as paraneoplastic hypoinsulinemic hypoglycemia associated with a benign or malignant solitary fibrous tumor frequently located in pleural, but also extrapleural sites. Hypoglycemia can be attributed to paraneoplastic secretion of "Big-IGF-II," a precursor of Insulin-like growth factor-II. This prohormone aberrantly binds to and activates insulin receptors, with consecutive initiation of common insulin actions such as inhibition of gluconeogenesis, activation of glycolysis and stimulation of cellular glucose uptake culminating in recurrent tumor-induced hypoglycemic episodes. Complete tumor resection or debulking surgery is considered the most promising treatment for DPS. CASE: Here, we report a rare case of a recurrent Doege-Poter Syndrome with atypical gelatinous tumor lesions of the lung, pleura and pericardial fat tissue in an 87-year-old woman. Although previously described as ineffective, we propose that adjuvant treatment with Octreotide in conjunction with intravenous glucose helped to maintain tolerable blood glucose levels before tumor resection. The somatostatin-analogue Lanreotide was successfully used after tumor debulking surgery (R2-resection) to maintain adequate blood glucose control. CONCLUSION: We conclude that somatostatin-analogues bear the potential of being effective in conjunction with limited surgical approaches for the treatment of hypoglycemia in recurrent or non-totally resectable SFT entities underlying DPS.


Subject(s)
Congenital Abnormalities , Hypoglycemia , Kidney Diseases/congenital , Kidney/abnormalities , Neoplasms , Female , Humans , Aged, 80 and over , Somatostatin , Hypoglycemia/etiology
2.
Surg Innov ; 31(2): 185-194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403897

ABSTRACT

BACKGROUND: To date, several chest drainage systems are available, such as digital drainage systems (DDS) and traditional systems with continuous suction or water seal. However, none of these systems were yet shown to be favorable in the treatment of complex situations such as persistent air leaks or residual spaces. We present in-vitro as well as clinical data of a novel hybrid drainage system consisting of an optimized digital drainage system (ODDS) and an underwater seal drainage system (UWSD). METHODS: For in-vitro analysis, a DDS and an ODDS were connected to a pleural cavity simulator. Different air leaks were produced and data on intrapleural pressure and air flow were analyzed. Furthermore, we tested the hybrid drainage system in 10 patients with potential air leaks after pulmonary surgery. RESULTS: In in-vitro analysis, we could show, that with advanced pump technology, pressure fluctuations caused by the drainage system when trying to maintain a set pressure level in patients with airleaks were much smaller when using an ODDS and could even be eliminated when using a fluid collection canister with sufficient buffer capacity. This minimized air leak boosts caused by the drainage system. Optimizing the auto-pressure regulation algorithms also led to a reduced airflow through the fistula and promoted rest. Switching to a passive UWSD also reduced the amount of airflow. Clinical application of the hybrid drainage system yielded promising results. CONCLUSION: The novel hybrid drainage system shows promising results in the treatment of patients with complex clinical situations such as persistent air leaks.


Subject(s)
Drainage , Lung , Humans , Lung/surgery , Suction , Drainage/methods , Pleural Cavity , Algorithms , Chest Tubes , Pneumonectomy
4.
Exp Neurol ; 236(1): 112-21, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22548980

ABSTRACT

Among endogenous adaptive systems to hypoxia, neuroglobin, a recently discovered heme protein, was suggested as a novel oxygen-dependent neuroprotectant. We aimed to characterize i) maturational age-related regulation of neuroglobin in the developing mouse brain under normoxic and hypoxic conditions, and ii) the role of hypoxia-inducible transcription factors (HIFs) as possible mediators of O(2)-dependent regulation of neuroglobin in vitro and in vivo. During early stages of postnatal brain maturation (P0-P14) neuroglobin mRNA levels significantly increased in developing mouse forebrains. By immunohistochemical analysis we confirmed expression of neuroglobin protein in the cytoplasm of developing neurons but not glial cells under normoxic conditions. Exposure of the immature brains (P0, P7) to acute (8% O(2), 6h) and chronic systemic hypoxia (10% O(2), 7 days) led to differential activation of neuroglobin varying with maturational stage (P0, P7) and severity of hypoxia. This observation may indicate that neuroglobin is involved in adaptive responses of immature neurons to acute hypoxia during an early stage of mouse brain maturation (P0). In response to activation of the HIF system by prolyl-4-hydroxylase inhibitor (FG-4497), neuroglobin mRNA expression was significantly up-regulated in primary mouse cortical neurons (DIV6) exposed to normoxia and hypoxia (1% O(2)) compared to non-treated controls. In conclusion, present results strongly indicate that cerebral regulation of neuroglobin is related to maturational stage and that hypoxia-induced neuroglobin up-regulation is modified by the HIF system.


Subject(s)
Globins/metabolism , Hypoxia, Brain/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Telencephalon/pathology , Acute Disease , Animals , Animals, Newborn , Chronic Disease , Female , Gene Expression Regulation, Developmental/physiology , Globins/genetics , Hypoxia, Brain/genetics , Hypoxia, Brain/pathology , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neuroglia/metabolism , Neuroglia/pathology , Neuroglobin , Neurons/pathology , Pregnancy , Primary Cell Culture , Telencephalon/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...